May 30, 2018

Technology Roulette

Managing Loss of Control as Many Militaries Pursue Technological Superiority

Executive Summary

This report recognizes the imperatives that inspire the U.S. military’s pursuit of technological superiority over all potential adversaries. These pages emphasize, however, that superiority is not synonymous with security. Experience with nuclear weapons, aviation, and digital information systems should inform discussion about current efforts to control artificial intelligence (AI), synthetic biology, and autonomous systems. In this light, the most reasonable expectation is that the introduction of complex, opaque, novel, and interactive technologies will produce accidents, emergent effects, and sabotage. In sum, on a number of occasions and in a number of ways, the American national security establishment will lose control of what it creates. 

A strong justification for our pursuit of technological superiority is that this superiority will enhance our deterrent power. But deterrence is a strategy for reducing attacks, not accidents; it discourages malevolence, not inadvertence. In fact, technological proliferation almost invariably closely follows technological innovation. Our risks from resulting growth in the number and complexity of interactions are amplified by the fact that proliferation places great destructive power in the hands of others whose safety priorities and standards are likely to be less ambitious and less well funded than ours. 

Accordingly, progress toward our primary goal, superiority, should be expected to increase rather than reduce collateral risks of loss of control. This report contends that, unfortunately, we cannot reliably estimate the resulting risks. Worse, there are no apparent paths for eliminating them or even keeping them from increasing. The benefit of an often referenced recourse, keeping “humans in the loop” of operations involving new technologies, appears on inspection to be of little and declining benefit. 

We are not, however, impotent. With more attention the American military at least can dampen the likely increase in accidents and moderate adverse consequences when they occur. Presuming that the United States will be a victim of accidents, emergent effects, and sabotage, America should improve its planning for coping with these consequences. This will involve reallocating some of the immense energy our military invests in preparing for malevolence to planning for situations arising from inadvertent actions and interactions. 

The U.S. Department of Defense and intelligence agencies also must design technologies and systems not just for efficacy and efficiency, but also with more attention to attributes that can mitigate the consequences of failure and facilitate resilient recovery. The pervasive insecurity of digital information systems should be an object demonstration that it is exceedingly costly, perhaps impossible, to attempt to counter loss of control after we have become dependent on a new technology, rather than at the time of design. 

Most demandingly, the United States also must work with its opponents to facilitate their control and minimize their risks of accidents. Twenty-first century technologies are global not just in their distribution, but also in their consequences. Pathogens, AI systems, computer viruses, and radiation that others may accidentally release could become as much our problem as theirs. Agreed reporting systems, shared controls, common contingency plans, norms, and treaties must be pursued as means of moderating our numerous mutual risks. The difficulty of taking these important steps should remind us that our greatest challenges are not in constructing our relationships to technologies, it is in constructing our relationships with each other. 

These arguments are made to the national security community. These reflections and recommendations, however, should transcend their particulars and have implications for all discussion about control of dangerous new technologies. 

The full report is available online.

Download PDF

Author

  • Richard Danzig

    Adjunct Senior Fellow, Senior Advisor, Johns Hopkins Applied Physics Laboratory

    Richard Danzig’s primary activities in recent years have been as a consultant to U.S. Intelligence Agencies and the Department of Defense on national security issues. He is a ...

  • Podcast
    • October 17, 2024
    U.S. Chip Controls and the Future of AI Compute

    That escalated quickly! Emily and Geoff discuss why the U.S. aim to deny China access to the computing power necessary for frontier AI capabilities has led to an ever expandin...

    By Emily Kilcrease, Geoffrey Gertz & Pablo Chavez

  • Podcast
    • October 11, 2024
    Asymmetry and AI: The Battle for Power

    Paul Scharre, Vice President and Director of Studies at CNAS, joins Zero Pressure to discuss the world of asymmetric warfare, a term used to describe imbalances in conflict. F...

    By Paul Scharre

  • Commentary
    • Just Security
    • September 19, 2024
    Competition, Not Control, is Key to Winning the Global AI Race

    The United States, with much of the world’s AI-enabling infrastructure, has positioned itself as the global leader in AI innovation. That might not be the case for much longer...

    By Keegan McBride & Matthew Mittelsteadt

  • Commentary
    • Time
    • September 16, 2024
    Regulating AI Is Easier Than You Think

    Countries can regulate AI from the ground up by controlling access to highly specialized chips...

    By Paul Scharre

View All Reports View All Articles & Multimedia